Saturday, 14 April 2012

Serial communication


In telecommunication and computer science, serial communication is the process of sending data one bit at a time, sequentially, over a communication channel or computer bus. This is in contrast to parallel communication, where several bits are sent as a whole, on a link with several parallel channels. Serial communication is used for all long-haul communication and most computer networks, where the cost of cable and synchronization difficulties make parallel communication impractical. Serial computer buses are becoming more common even at shorter distances, as improved signal integrity and transmission speeds in newer serial technologies have begun to outweigh the parallel bus's advantage of simplicity (no need for serializer and deserializer, or SerDes) and to outstrip its disadvantages (clock skew, interconnect density). The migration from PCI to PCI Express is an example.


The communication links across which computers—or parts of computers—talk to one another may be either serial or parallel. A parallel link transmits several streams of data simultaneously along multiple channels (e.g., wires, printed circuit tracks, or optical fibres); a serial link transmits a single stream of data.
Although a serial link may seem inferior to a parallel one, since it can transmit less data per clock cycle, it is often the case that serial links can be clocked considerably faster than parallel links in order to achieve a higher data rate. A number of factors allow serial to be clocked at a higher rate:
Clock skew between different channels is not an issue (for unclocked asynchronous serial communication links).


A serial connection requires fewer interconnecting cables (e.g., wires/fibres) and hence occupies less space. The extra space allows for better isolation of the channel from its surroundings.
Crosstalk is less of an issue, because there are fewer conductors in proximity.
In many cases, serial is a better option because it is cheaper to implement. Many ICs have serial interfaces, as opposed to parallel ones, so that they have fewer pins and are therefore less expensive.

No comments: