Pages

Sunday, 26 June 2016

Weather

Weather is the state of the atmosphere, to the degree that it is hot or cold, wet or dry, calm or stormy, clear or cloudy. Most weather phenomena occur in the troposphere, just below the stratosphere. Weather refers to day-to-day temperature and precipitation activity, whereas climate is the term for the statistics of atmospheric conditions over longer periods of time. When used without qualification, "weather" is generally understood to mean the weather of Earth.

Weather is driven by air pressure, temperature and moisture differences between one place and another. These differences can occur due to the sun's angle at any particular spot, which varies by latitude from the tropics. The strong temperature contrast between polar and tropical air gives rise to the jet stream. Weather systems in the mid-latitudes, such as extratropical cyclones, are caused by instabilities of the jet stream flow. Because the Earth's axis is tilted relative to its orbital plane, sunlight is incident at different angles at different times of the year. On Earth's surface, temperatures usually range ±40 °C (−40 °F to 100 °F) annually. Over thousands of years, changes in Earth's orbit can affect the amount and distribution of solar energy received by the Earth, thus influencing long-term climate and global climate change.

Surface temperature differences in turn cause pressure differences. Higher altitudes are cooler than lower altitudes due to differences in compressional heating. Weather forecasting is the application of science and technology to predict the state of the atmosphere for a future time and a given location. The system is a chaotic system; so small changes to one part of the system can grow to have large effects on the system as a whole. Human attempts to control the weather have occurred throughout human history, and there is evidence that human activities such as agriculture and industry have modified weather patterns.

Studying how the weather works on other planets has been helpful in understanding how weather works on Earth. A famous landmark in the Solar System, Jupiter's Great Red Spot, is an anticyclonic storm known to have existed for at least 300 years. However, weather is not limited to planetary bodies. A star's corona is constantly being lost to space, creating what is essentially a very thin atmosphere throughout the Solar System. The movement of mass ejected from the Sun is known as the solar wind.

Studying how the weather works on other planets has been seen as helpful in understanding how it works on Earth. Weather on other planets follows many of the same physical principles as weather on Earth, but occurs on different scales and in atmospheres having different chemical composition. The Cassini–Huygens mission to Titan discovered clouds formed from methane or ethane which deposit rain composed of liquid methane and other organic compounds. Earth's atmosphere includes six latitudinal circulation zones, three in each hemisphere. In contrast, Jupiter's banded appearance shows many such zones, Titan has a single jet stream near the 50th parallel north latitude, and Venus has a single jet near the equator.

One of the most famous landmarks in the Solar System, Jupiter's Great Red Spot, is an anticyclonic storm known to have existed for at least 300 years. On other gas giants, the lack of a surface allows the wind to reach enormous speeds: gusts of up to 600 metres per second (about 2,100 km/h or 1,300 mph) have been measured on the planet Neptune. This has created a puzzle for planetary scientists. The weather is ultimately created by solar energy and the amount of energy received by Neptune is only about 1⁄900 of that received by Earth, yet the intensity of weather phenomena on Neptune is far greater than on Earth. The strongest planetary winds discovered so far are on the extrasolar planet HD 189733 b, which is thought to have easterly winds moving at more than 9,600 kilometres per hour (6,000 mph).

No comments:

Post a Comment